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a  b  s  t  r  a  c  t

Background:  The  American  Heart  Association  has  established  criteria  for the  evaluation  of novel  markers
of cardiovascular  risk.  In  accordance  with  these  criteria,  we  assessed  the  association  between  a  multi-
locus  genetic  risk  score  (GRS)  and  incident  coronary  heart  disease  (CHD),  and  evaluated  whether  this  GRS
improves  the  predictive  capacity  of  the  Framingham  risk  function.
Methods  and  results:  Using  eight  genetic  variants  associated  with  CHD  but  not  with  classical  cardiovascular
risk  factors  (CVRFs),  we  generated  a  multi-locus  GRS,  and  found  it to be  linearly  associated  with  CHD  in
two population  based  cohorts:  The  REGICOR  Study  (n =  2351)  and  The  Framingham  Heart  Study  (n =  3537)
(meta-analyzed  HR  [95%CI]:  ∼1.13  [1.01–1.27],  per unit).  Inclusion  of  the  GRS  in  the  Framingham  risk
function  improved  its  discriminative  capacity  in  the  Framingham  sample  (c-statistic:  72.81  vs.72.37,
p  =  0.042)  but  not  in  the  REGICOR  sample.  According  to both  the  net  reclassification  improvement  (NRI)
index  and  the  integrated  discrimination  index  (IDI),  the  GRS  improved  re-classification  among  individuals
isk assessment with  intermediate  coronary  risk  (meta-analysis  NRI  [95%CI]:  17.44  [8.04;  26.83]),  but  not  overall.
Conclusions:  A  multi-locus  GRS  based  on genetic  variants  unrelated  to CVRFs  was  associated  with  a  lin-
ear  increase  in risk  of CHD  events  in  two  distinct  populations.  This  GRS  improves  risk reclassification
particularly  in  the population  at intermediate  coronary  risk.  These  results  indicate  the  potential  value
of the  inclusion  of  genetic  information  in classical  functions  for risk  assessment  in the  intermediate  risk

population  group.

. Introduction
The main goal of primary cardiovascular prevention is to reduce
he incidence of clinical events [1].  Generally, two  strategies are

Abbreviations: AHA, American Heart Association; CHD, coronary heart disease;
VD, Cardiovascular diseases; CVRFs, cardiovascular risk factors; DNA, deoxyribonu-
leic Acid; GRS, genetic risk score; GWAS, genome-wide association studies; IDI,
ntegrated discrimination improvement; MI,  myocardial infarction; NRI, Net reclas-
ification improvement; REGICOR, Registre Gironí del Cor.
∗ Corresponding author at: Cardiovascular Epidemiology and Genetics Research
roup, IMIM,  Doctor Aiguader 88, 08003 Barcelona, Spain. Tel.: +34 933 160 800.

E-mail address: relosua@imim.es (R. Elosua).
1 These authors contributed equally to this work.

021-9150/$ – see front matter ©  2012 Elsevier Ireland Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.atherosclerosis.2012.03.024
© 2012 Elsevier Ireland Ltd. All rights reserved.

used: (i) population-wide interventions based on the promotion
of healthy lifestyles and public health policies; and (ii) targeting
of high risk individuals, in whom intensive strategies are imple-
mented to control cardiovascular risk factors. In clinical practice,
cardiovascular risk functions are used to identify the high risk
individuals by estimating the probability of presenting a coronary
(CHD) event, usually in the subsequent 10 years [2].  Although these
screening methods are well established and widely used, the major-
ity of the CHD events occur in individuals who are classified as
having low or intermediate risk [3]. Therefore, the improvement of

risk estimation, especially in the intermediate risk group, is a prior-
ity for research. In this regard, the identification of new biomarkers,
particularly those that provide information complementary to that
already provided by classical cardiovascular risk factors (CVRFs)

dx.doi.org/10.1016/j.atherosclerosis.2012.03.024
http://www.sciencedirect.com/science/journal/00219150
http://www.elsevier.com/locate/atherosclerosis
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4],  has been the subject of intense research in recent years. To
hat end, the American Heart Association (AHA) has proposed sev-
ral essential steps [5] for assessing the potential value of such
ovel biomarkers in estimating risk: (i) initial demonstration of
ssociation between marker and event risk (proof of concept), (ii)
alidation of this relationship in prospective cohort studies, (iii)
ssessment of the improvement of the predictive capacity of the
isk function due to the addition of the marker, (iv) assessment
f effects on patient management and outcomes, and, (v) cost-
ffectiveness of population-wide implementation.

Genome-wide association studies (GWAS) have led to the iden-
ification of a series of genetic variants that are robustly associated
ith CHD risk [6],  although their individual effects on risk are gen-

rally quite small. Since these effects have also been observed to
e generally additive, overall genetic risk load, formulated as a
ulti-locus genetic risk score (GRS), has been proposed [7,8] as

 potentially informative biomarker for improving the estimation
f coronary risk [1,9]. We  have recently reported the results of a
arge case-control study aimed at addressing the first step of the
HA recommendations, in which we observed a robust association
etween CHD risk and a GRS composed of variants associated with
HD, but not with classical CVRFs [10].

Following on from our previous work, the aims of the current
tudy were to address steps 2 and 3 of the AHA recommendations
or the same GRS. First, we assessed the association between the

ulti-locus GRS and incident CHD events in two prospective cohort
tudies with low and high CHD mortality (AHA, step 2). Second, we
ssessed whether the inclusion of this GRS improves the predictive
apacity of the Framingham risk function (AHA, step 3). In addition,
e evaluated the hypothesis that the improvement in predictive

apacity provided by the GRS is greater among individuals with
ntermediate risk.

. Methods

An extended description of the methods used is given in the
upplementary methods. Supplementary materials section (Sx.x),
able (S.Tx), figure (S.Fx) and analysis (S.Ax) numbers are indicated
n parentheses throughout the manuscript.

.1. Design

Two prospective population-based cohorts were analyzed in
his study. (i) The REGICOR (Registre Gironí del Cor) cohort
riginally included 4778 individuals from two  population-based
ross-sectional studies conducted in the province of Girona, in
orth-eastern Spain, in 1995 and 2000 [11]. This population has

ow CHD mortality [12]. (ii) The Framingham Heart Study orig-
nally included 5209 men  and women recruited in 1948 [13]
nd 5124 offspring of the original participants and their spouses
ecruited in 1971 [14], from whom DNA was collected during the
980s and 1990s [15]. This population has relatively high CHD
ortality. We  obtained access to phenotype and genotype data

or the Framingham sample under the Framingham Share ini-
iative via the Database of Genotypes and Phenotypes (dbGaP,
cbi.nlm.nih.gov/dbgap; Project number 1534). To maximize the
umber of participants included in the analysis for whom genetic
ata was available, we set exams 15 and 5 as the baseline visits
or the Original Cohort (2632 individuals, 1977–1979) and the Off-
pring Cohort (3799 individuals, 1991–1995), respectively (S.F1).
For both cohorts we selected participants aged 35–74 years at
he time of the exams, who were free of cardiovascular disease
CVD) at that time, and for whom DNA and complete follow-up
nformation was available.
rosis 222 (2012) 456– 463 457

2.2. Selection of genetic variants, genotyping and multi-locus risk
score generation

We  selected 8 genetic variants associated with CHD but not
with CVRFs (blood pressure, total cholesterol, low density lipopro-
tein (LDL) cholesterol, high density lipoprotein (HDL) cholesterol,
triglycerides, diabetes, smoking) and generated a multi-locus GRS
as previously described [10]. Briefly, the genetic variants were
selected from the catalog of GWA  studies of the National Human
Genome Research Institute (NHGRI GWAS catalog [6],  reviewed in
August 2010) using the following criteria: (a) the genetic variants
were associated with CHD (p ≤ 1 × 10−6); (b) when two or more
genetic variants were in linkage disequilibrium (r2 > 0.3) only one
was  selected; (c) we  excluded SNPs that were previously reported,
either in the literature or the NHGRI GWAS catalog, to be associated
with one or more CVRFs (see more detail of this process in S1.1 and
S.F2). The variants selected were: rs17465637 in MIA3; rs6725887
in WDR12; rs9818870 in MRAS;  rs12526453 in PHACTR1; rs1333049
near CDKN2A/2B; rs1746048 near CXCL12; rs9982601 near SCL5A3.
We also included the rs10455872 variant in LPA, which has recently
been shown to be strongly associated with CHD risk independently
of CVRFs [16].

REGICOR samples were genotyped by Centro Nacional de Inves-
tigación Oncológica (CNIO, Madrid, Spain) using the Cardio inCode
chip (Ferrer inCode, Barcelona, Spain), which is based on Veracode
(Illumina, San Diego, USA) and KASPar (KBioscience, Hoddesdon,
United Kingdom) technologies. Genotype data for the Framingham
participants was  obtained via dbGaP for genotyped (Affymetrix
500 K and 50 K chips) and imputed variants (HapMap CEU release
22, b36) (S1.3). Quality control criteria were applied both to indi-
viduals and selected SNPs (S1.4).

A multi-locus GRS was  computed for each individual as the sum
of the number of risk alleles across all 8 variants [10], after weight-
ing each one by its estimated effect size in the CARDIoGRAM study
(S1.2) [17].

2.3. Follow-up and phenotype definition

All REGICOR participants were periodically contacted to ascer-
tain whether they had presented any CHD event up until the end
of 2009, and events were reviewed using hospital or primary care
records. Fatal events were identified from regional and national
mortality registers. After reviewing all medical records and physi-
cian notes, suspected CHD events were classified in committee
according to standardized criteria [18].

Among Framingham participants, a record was  made of all
CHD events that occurred during follow-up until the end of 2007.
Suspected CHD events were reviewed by a panel of Framing-
ham physician investigators after reviewing all available medical
records and physician notes using standardized criteria [19].

CHD events included myocardial infarction (MI), angina, coro-
nary revascularization and death due to CHD (S2).

2.4. Estimation of ten-year cardiovascular risk

Coronary risk was estimated using the standard 10-year Fram-
ingham risk function [19] and the REGICOR function, which is an
adaptation of the former that has been validated and calibrated for
the Spanish population (S3 and S4)  [9].  Both functions included age,
sex, systolic and diastolic blood pressure, total cholesterol level,
HDL cholesterol level, smoking status, diabetes status and the GRS,
where appropriate. Risk was computed using the following formula

(also see S4),

Risk = 1 − S
exp

(∑p

j=1
ˇF

j
·(Fj−F̄j)+ˇGRS ·(GRS−GRS)

)

X̄
,
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Table 1
Description of the phenotypic characteristics of the individuals included in the analysis from the REGICOR and from the Framingham Heart Study cohorts.

REGICOR Framingham

All None CHD p-Value All None CHD p-Value

N 2351 2190 107 – 3537 2863 429 –
Age  (years)a 53.9 (11.2) 53.3 (11.1) 61.4 (9.40) <0.001 56.0 (9.3) 54.8 (9.2) 60.5 (7.8) <0.001
Gender (male)b 1123 (47.8) 1016 (46.4) 74 (69.2) <0.001 1540 (43.5) 1190 (41.6) 250 (58.3) <0.001
SBP  (mmHg)a 132 (20.8) 131 (20.5) 147 (18.0) <0.001 127 (18.3) 125 (17.9) 134 (17.4) <0.001
DBP  (mmHg)a 79.5 (10.4) 79.3 (10.3) 82.6 (10.7) 0.004 75.0 (9.8) 74.6 (9.8) 77.7 (9.6) <0.001
Hypertensionb 938 (40.1) 822 (37.7) 78 (72.9) <0.001 1121 (31.7) 802 (28.0) 214 (50.0) <0.001
Smokingb 511 (22.0) 476 (22.0) 27 (25.5) 0.469 713 (20.2) 531 (18.5) 111 (25.9) 0.002
Total  cholesterol (mg/dL)a 225 (42.4) 224 (42.0) 233 (46.6) 0.103 210 (38.6) 207 (37.4) 224 (41.0) <0.001
LDL  cholesterol (mg/dL)a 152 (37.9) 151 (37.7) 159 (39.6) 0.125 126 (34.0) 124 (33.3) 133 (35.7) 0.001
HDL  cholesterol (mg/dL)a 51.7 (13.3) 52.1 (13.2) 44.8 (12.4) <0.001 51 (15.2) 52 (15.3) 46 (13.1) <0.001
Triglycerides (mg/dL)c 92 (70–127) 91 (69–125) 123 (90–170) <0.001 116 (83–172) 112 (80–164) 158 (104–217) <0.001
Cholesterol treatmentb 157 (6.7) 136 (6.2) 16 (15.0) 0.003 166 (4.7) 118 (4.1) 28 (6.5) 0.055
Diabetesb 316 (13.8) 280 (13.1) 29 (27.6) <0.001 226 (6.4) 138 (4.8) 60 (14.0) <0.001
Diabetes treatmentb 96 (4.11) 74 (3.4) 18 (16.8) <0.001 90 (2.5) 48 (1.7) 31 (7.2) <0.001
Body  mass index (kg/m2)a 27.4 (4.47) 27.3 (4.46) 28.9 (4.47) 0.001 27.1 (4.8) 27.0 (4.8) 27.9 (4.4) <0.001
Obesity (BMI≥30 kg/m2)b 596 (25.6) 540 (24.9) 38 (35.8) 0.046 780 (22.1) 604 (21.2) 117 (27.3) 0.006
Family history of CHDb 272 (11.7) 301 (11.5) 19 (17.9) 0.150 551 (24.8) 478 (24.3) 55 (32.5) 0.016

CHD, individuals who presented a coronary event during the follow-up; SBP, systolic blood pressure; DBP, diastolic blood pressure; LDL, low density lipoprotein; HDL, high
density lipoprotein; BMI, body mass index.
“None”: all individuals except those who  presented any cardiovascular event (CHD, stroke or peripheral arterial disease).
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b n (proportion, %).
c Median (25th and 75th percentiles).

here (1 − S) is the probability of presenting a CHD event in the
ext 10 years based on the incidence of CHD in the population, (Fj)

s the individual’s exposure to the various risk factors considered,
ncluding the genetic risk factor (GRS), (F̄j, GRS) is the population

ean of those risk factors, and (ˇ) is the effect size of each risk
actor.

. Statistical analysis

We  used standard parametric and non-parametric methods to
ompare the characteristics of different groups of individuals (S4).

e tested for association between incidence of coronary events
nd individual genetic variants and the GRS using Cox proportional
azards models, with adjustment for CVRFs (see formula above).
e accounted for family relatedness in the Framingham cohort by

djusting for the first five genetic principal components [20]. Each
ohort was analyzed separately, and the estimates were pooled
sing an inverse-variance weighted meta-analysis under a random
ffects model [21].

We used three different statistics to assess the potential value
f including the GRS in risk prediction:

a) the goodness-of-fit of the models was evaluated using a version
of the Hosmer–Lemeshow test [22];

b) the discriminative capacity of the model was evaluated using
the concordance index (c-statistic) [23];

c) reclassification improvement was calculated using the net
reclassification improvement (NRI) index [24] and the inte-
grated discrimination improvement (IDI) index [25].

For the assessment of reclassification improvement, we  defined
our risk categories (low, intermediate-low, intermediate-high and
igh) with cut-off points defined in each cohort, according to
urrent guidelines in each country (REGICOR: [0–5)%, [5–10)%,
10–15)%, ≥15%; Framingham: [0–10)%, [10–15)%, [15–20)%, ≥20%,
espectively). Analyses that focused on individuals with intermedi-

te risk included individuals from both the intermediate-low and
ntermediate-high groups. We  calculated the expected number of
vents at 10-years in each risk category and in each cohort using
aplan–Meier estimates [26]. A bootstrapping method was  used to
construct confidence intervals for IDI and NRI in order to account
for uncertainty in the Kaplan–Meier estimates, as suggested by
Steyerberg et al. [26].

For each SNP and for the GRS we computed our study’s power
to detect associations in each cohort and in the meta-analysis (S5).

All analyses were performed using the R statistical package (ver-
sion 2.11) [27].

4. Results

4.1. Sample selection and sample characteristics

The process of selection of individuals to include in our anal-
ysis is described in S.F1. From the REGICOR sample we  included
2351 individuals, including 107 CHD events, with a mean follow-
up of 9.75 years. From the Framingham sample we  included 3537
individuals, including 429 events, with a mean follow-up of 13.32
years. In the REGICOR sample, we observed no significant differ-
ence in the estimated 10-year coronary risk between individuals
who  were included in the analysis compared to those who were
not included (S.T1). In the Framingham sample, many individuals
were excluded from our study due to the non-availability of genetic
data, with the result that those who  were included presented a bet-
ter cardiovascular risk profile (S.T1) and a lower incidence of CHD
events than those who were not included (suggesting a survival
bias related to DNA availability; S.F3).

The characteristics of the participants from each cohort that
were included in our analyses, stratified by presence of CHD events
are shown in Table 1. The observed effects of each cardiovascular
risk factor on risk of having a CHD event were concordant with
those expected and are presented in S.T2.

4.2. Validation of the association between the GRS and risk of CHD

The results of the genotyping quality control process are shown
in S.T3, and those of the test for association between the genetic

variants included in the GRS and incidence of CHD events is shown
in S.T3 (also see S.T4 for power computations). Only the rs1333049
variant in CDKN2A/2B was nominally associated with CHD events
in the meta-analysis of both studies.
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Table 2
Description of the characteristics of the participants across quintiles of the genetic risk score in both cohorts.

Variables Quintiles of genetic score

Q1 Q2 Q3 Q4 Q5 p-Value p-Trend

REGICOR
N 524 416 473 471 467
Age  (years)a 54.1 (11.1) 52.9 (11.0) 54.6 (11.4) 54.2 (11.0) 53.6 (11.3) 0.170 0.998
Gender (men)b 243 (46.4) 205 (49.3) 217 (45.9) 234 (49.7) 224 (48.0) 0.705 0.581
Total  cholesterol (mg/dL)a 221 (42.8) 225 (41.8) 227 (42.5) 228 (42.0) 225 (42.8) 0.072 0.049
HDL  cholesterol (mg/dL)a 51.1 (12.9) 52.4 (13.5) 52.5 (13.4) 51.0 (13.0) 51.5 (13.4) 0.304 0.866
SBP  (mmHg)a 132.0 (22.0) 131.0 (20.4) 132.0 (20.4) 134.0 (21.5) 132.0 (19.5) 0.278 0.749
DBP  (mmHg)a 78.9 (10.2) 79.5 (10.8) 79.0 (10.2) 80.2 (10.6) 79.8 (10.0) 0.257 0.099
Diabetesb 62 (12.1) 71 (17.5) 66 (14.3) 61 (13.3) 56 (12.3) 0.137 0.590
Smokingb 107 (20.7) 87 (21.0) 98 (20.8) 107 (23.1) 112 (24.3) 0.577 0.128
Family history of CHDb 46 (8.88) 51 (12.4) 55 (11.6) 63 (13.5) 57 (12.4) 0.207 0.064
Estimated 10-year coronary riskc 3.2 (1.7–6.4) 3.2 (1.6–5.6) 3.4 (1.69–6.5) 3.5 (1.8–6.6) 3.1 (1.8–5.9) 0.196 0.607
Incidence of coronary eventsd 5.08 3.44 3.97 5.98 7.06 0.038 0.015
FRAMINGHAM
N  743 712 681 711 690
Age  (years)a 56.6 (9.10) 56.1 (9.12) 55.6 (9.58) 56.1 (9.12) 55.6 (9.41) 0.172 0.060
Gender (men)b 351 (47.2) 321 (45.1) 305 (44.8) 299 (42.1) 264 (38.3) 0.008 <0.001
Total  cholesterol (mg/dL)a 208 (37.1) 209 (37.6) 213 (39.0) 211 (39.3) 210 (39.8) 0.151 0.242
HDL  cholesterol (mg/dL)a 50.5 (14.7) 50.2 (14.9) 51.1 (15.2) 52.0 (15.8) 51.3 (15.2) 0.151 0.048
SBP  (mmHg)a 127 (18.4) 126 (17.0) 127 (18.8) 126 (18.2) 127 (18.9) 0.938 0.647
DBP  (mmHg)a 75.2 (10.2) 75.1 (9.54) 74.8 (9.81) 75.0 (9.65) 74.7 (9.73) 0.872 0.329
Diabetesb 47 (6.33) 59 (8.29) 32 (4.70) 39 (5.49) 49 (7.10) 0.059 0.658
Smokingb 132 (17.8) 146 (20.5) 146 (21.4) 140 (19.7) 149 (21.6) 0.358 0.144
Family history of CHDb 113 (24.6) 112 (24.7) 105 (24.7) 109 (24.8) 112 (25.3) 0.999 0.763
Estimated 10-year coronary riskc 8.3 (4.7–14.4) 8.0 (4.8–13.9) 8.5 (4.4–14.7) 7.7 (4.1–13.7) 7.7 (4.2–13.9) 0.261 0.229
Incidence of coronary eventsd 5.39 6.60 7.62 7.50 8.42 0.361 0.054

HDL, high density lipoprotein; SBP, systolic blood pressure; DBP, diastolic blood pressure; CHD, coronary heart disease.
a Mean (standard deviation).
b n (proportion, %).
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c Estimation of 10-year coronary risk based on the classical risk function without
d Number of cases/100 individuals in 10 years.

Clinical characteristics of the participants within each quintile
f the GRS are shown in Table 2. The GRS was not directly associated
ith any of the classical CVRFs in either cohort, with the exception

f gender in Framingham (which we believe to be an artefact of the
urvival bias among individuals for whom DNA was available). The
roportion of participants with a positive family history of CHD did
ot change between quintiles of the GRS. We  observed a general

ncrease in the incidence of coronary events from the bottom to
he top quintile of the GRS in both cohorts (Table 2).

For the GRS, we estimated that our study had 80% power to
etect a HR of 1.17, 1.09 and 1.18 per unit increase in REGICOR,
ramingham, and the meta-analysis, respectively (S.T4). Both the
odels with and without the GRS were well calibrated in the

EGICOR sample, but not in the Framingham sample, where we

bserved fewer events than expected, likely due to the survival
ias mentioned above (S.F4).

The GRS was linearly associated with incidence of CHD in
oth cohorts (p = 0.001 in REGICOR and p = 0.016 in Framingham;

able 3
ultivariate adjusted association between the genetic risk score and risk of coronary eve

Genetic risk score REGICOR Fram

HR [95%CI]a p-Value HR [9

Continuous 1.21 [1.09–1.36] 0.001 1.07 [
Quintiles p-Trend 0.010 p-Tre
Q1  1 – 1 

Q2  0.76 [0.37–1.53] 0.437 1.06 [
Q3  0.84 [0.45–1.58] 0.586 1.22 [
Q4  1.19 [0.67–2.12] 0.555 1.33 [
Q5 1.86  [1.08–3.20] 0.025 1.29 [

ll models were adjusted for the sum of the products of the coefficient for each classical 

he  difference between the participant’s value and the population mean of that risk fact
ohort  we  also adjusted for the first five genetic principal components.

a HR [95%CI]: Hazard ratio [95% confidence interval].
RS, mean (95% confidence interval).

Table 3), and in the meta-analysis (HR = 1.13; 95% CI: 1.01–1.27)
(Table 3). This association remained statistically significant after
further adjustment for family history of CHD (HR = 1.17; 95% CI:
1.09–1.26). Participants in the top quintile of the GRS had 1.44
times greater risk of CHD, compared to those in the bottom quin-
tile (p-value for linear trend 0.002) (Table 3). In both cohorts the
distribution of the GRS was  slightly shifted to the right in indi-
viduals who had had an event, compared to those who had not
(Fig. 1).

4.3. Improvement in predictive capacity: discrimination and
reclassification
The addition of the GRS to the basic risk function improved its
capacity to predict CHD in the Framingham cohort (c-statistic, 72.81
vs. 72.37, p-value = 0.042) but not in the REGICOR cohort (78.35 vs.
78.33, p-value = 0.806).

nts as a continuous variable and between quintiles.

ingham Meta-analysis

5%CI]a p-Value HR [95%CI]a P-Value

1.01–1.14] 0.016 1.13 [1.01–1.27] 0.038
nd 0.032 p-Trend 0.002

– 1 –
0.78–1.45] 0.711 1.00 [0.76–1.34] 0.973
0.90–1.66] 0.206 1.12 [0.83–1.52] 0.448
0.99–1.80] 0.060 1.30 [1.00–1.69] 0.053
0.95–1.75] 0.104 1.44 [1.04–2.01] 0.030

risk factor estimated in the Framingham original and calibrated risk functions and
or (see main text for formula). To account for family structure in the Framingham
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5.46 (1.67) 5.99 (1.89) 0.005

3.21 (1.65-5.89) 7.85 (4.64-12.4) <0.001

3.23 (1.59-5.92) 7.98 (5.15-13.3) <0.001

NO EVENT CHD EVEN T

P-va lueN=429N=2,863

5.38 (1.62) 5.59 (1.63) 0.028

7.07 (3.65-12.4) 14.2 (8.77-21.7) <0.001

6.82 (3.67-12.2) 14.9 (9.02-22.9) <0.001

Fig. 1. Distribution of genetic risk score in REGICOR and Framingham participants according to the incidence of coronary events during the follow-up. The genetic risk score
is  represented in the ordinal axis (X axis) and is computed as a cumulative sum of all the risk alleles that a person carries, weighted by the effect of each SNP, and theoretically
ranging from 0 to 16 copies. “No event”: All individuals except those who  presented any cardiovascular event (CHD, stroke or peripheral arterial disease).

Fig. 2. Reclassification of individuals based on the 10-year predicted risk of coronary heart disease with and without the genetic risk score. Risk categories were defined using
n ediate
c 5–20)
a

fi
t
n
o
m
t
I
e

t
t
S

ational  recommendations. In REGICOR the cut-off points were: low [0–5)%, interm
ut-off  points were: low [0–10)%, intermediate-low [10–15)%, intermediate-high [1
nd  dark gray cells represent the opposite.

We  observed a general tendency for both measures of reclassi-
cation improvement, the NRI and IDI, to increase after addition of
he GRS to the basic risk function, although this improvement was
ot statistically significant for either measure in the meta-analysis
f the two cohorts. However, reclassification improvement was
ore marked in the group with intermediate risk, and was statis-

ically significant for both measures (NRI: 17.44, 95%CI 8.04;26.83;
DI: 0.29, 95%CI 0.01;0.56). Reclassification data and NRI and IDI for
ach cohort are shown in Fig. 2.
Results for a GRS constructed from 4 SNPs that had consis-
ent directions of effect in both cohorts, and for a GRS without
he CDKN2A/B variant were similar and are described in S.A2 and
.A3.
-low [5–10)%, intermediate-high [10–15)%, and high ≥15% risk; in Framingham the
% and high ≥20% risk. Light gray cells represent an improvement in reclassification

5. Discussion

In accordance with the AHA statement regarding assessment
of the value of novel risk biomarkers [5],  we have validated the
association between a multi-locus GRS and incidence of CHD events
in two  prospective cohort studies, and have shown that this GRS
improves the capacity of the Framingham risk function to predict
CHD events, primarily among individuals with intermediate risk.
5.1. Validation of the association between the GRS and risk of CHD

In this study, we  selected a series of genetic variants that have
been found to be robustly associated with CHD risk in multiple large
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ndependent samples and populations, but have not been reported
o be associated with CVRFs. Unsurprisingly, most of these variants
ere not nominally associated with CHD incidence in either of the

ohorts in this study, mainly due to their sample size and the weak
isk effects of the variants. However, the relevance of these variants
or CHD risk is beyond doubt and has been validated in different

eta-analyses [17].
A GRS constructed using these variants was linearly associated

ith incidence of CHD events in two cohorts with distinct back-
round levels of 10-year coronary risk. The effect size of the GRS
as modest (∼13% increase in risk of CHD per unit), and was also

ndependent of familial history of CHD [4]. This effect size is smaller
han that reported in the initial discovery case-control studies [10],
hich is likely due to these studies’ tendency to overestimate the

ffect sizes of real associations. In fact, the effect size of our GRS
ould even be slightly underestimated because of the fact that the
ndividuals included in the Framingham analysis have a more favor-
ble cardiovascular risk profile than those who were excluded due
o non-availability of DNA samples, thereby introducing a survival
ias.

A recent study of the Framingham Heart Study investigators
sing a GRS comprising 13 SNPs associated with CHD reports
he same results that we have obtained in this analysis, although
he group of SNPs is slightly different and the events of interest
nclude only myocardial infarction and coronary death [28]. We
lso observed a similar difference in risk between the top and bot-
om quintiles of the score (HR = 1.44) to that reported by Ripatti
t al. [8] (meta-analyzed HR = 1.66) for a similar GRS comprising 13
NPs associated with CHD, but not explicitly independent of CVRFs.
owever, this association has not been confirmed by other authors

29]. A number of differences between the Women’s Health Study
WHS) and the rest of studies may  explain the observed discordant
esults, but probably the most important is related to the different
ampling strategy used in the WHS  which included young women
ith relatively low baseline risk for CHD whereas the rest of stud-

es are community- or population-based including men  and women
hat may  have a higher baseline CHD risk.

.2. Improvement in predictive capacity: discrimination and
eclassification

As has been observed for several other biomarkers [30], we
bserved no marked improvement in the discriminative capacity
f the risk function, as measured by the c-statistic, which highlights
he challenge of risk prediction for complex traits [31]. However,
ome authors have expressed concerned about the use of the c-
tatistic as the main predictive metric, when the main goal in
linical practice is to better estimate an individual’s risk category,
eading to more effective preventive treatment decisions [32]. To
ddress this problem metrics such as IDI and NRI have been pro-
osed that assess a risk function’s ability to re-classify individuals
ho go on to have a coronary event and those who do not into
igher and lower risk categories, respectively [24].

In this study, we observed a general tendency for reclassifica-
ion to improve after addition of the GRS to the basic risk function
Fig. 2), although, as has been observed in previous studies [8,33],
he numbers of cases correctly reclassified into higher risk cate-
ories was a modest fraction of the total number of cases, and also
ome individuals were also incorrectly reclassified. This reclassifi-
ation improvement was not statistically significant overall.

.3. Improved reclassification in individuals with intermediate

oronary risk using the GRS

From a clinical perspective, the low sensitivity of risk func-
ions is exemplified by the fact that a significant proportion of
rosis 222 (2012) 456– 463 461

CHD events occur in individuals with intermediate coronary risk
[3,34], so improving risk estimation in this group could have a
significant impact on the total burden of CHD, and on the effective-
ness of population-wide treatment strategies. We  observed that the
GRS significantly improved the reclassification of individuals with
intermediate risk, above the level of improvement observed over-
all. Similarly, Ripatti et al. have recently reported a higher NRI in
individuals with intermediate CHD risk (9.7%) than that observed in
the population as a whole [8],  although the improvement was less
marked than for the intermediate risk group in our study (17.44%).
Improvements in risk reclassification have also been observed in
other studies through the inclusion of single genetic variants or a
GRS in cardiovascular risk functions [8,28,33,35,36],  with greater
improvement in the intermediate risk group, where this has been
assessed [8,33].

5.4. Strengths and limitations of the study

We  highlight the following strengths in our study. First, we
included two  cohorts, which allowed us to evaluate the robust-
ness of the effect size of the GRS, and to verify this effect size in
populations with distinct basal cardiovascular risks. Second, the
variants included in our score are likely to represent loci that are
truly relevant for CHD risk. The fact that most of these variants
individually were not significantly associated with CHD incidence,
but that the GRS was significantly associated and also generally
improved risk reclassification highlights the potential gain in infor-
mation afforded by using the GRS. Third, these variants are largely
independent of CVRFs, which is considered as an optimal strategy
[4]. Consequently, we found that the GRS constructed from these
variants was  also independent of the CVRFs, and of the 10-year risk
estimation based only on those CVRFs [4].  This indicates that this
GRS provides complementary information to that already provided
by the classical risk function. Moreover, the GRS was  also found to
be independent of family history of CHD [4].

Finally, and in accordance with European guidelines highlight-
ing the importance of assessing overall cardiovascular risk [1],  we
have also extended our analysis to a broader definition of CVD
events, including coronary events, stroke and peripheral artery dis-
ease, and observed largely consistent results to those for coronary
events only (S.A1).

The main limitation of this study is the fact that the size of the
individual cohorts and the number of events observed is limited.
This is especially true in the REGICOR sample because of the low
incidence of disease in this population. Moreover, a number of addi-
tional markers that fulfill our selection criteria have been reported
since we performed our initial SNP selection in August 2010
(rs12936587, rs2505083, rs17114036 and rs11556924, reported
in refs [17,37]). However, adding these 4 SNPs to the 8-SNP GRS
and repeating the analyses in the Framingham cohort (genotype
data for these SNPs were not available in REGICOR), we obtained
similar results in terms of the strength of the per-unit and per-
quintile risk effects, and similar improvements in reclassification
(S.A4). These results are also consistent with those of a recent study
[28], which indicated that the addition of 16 recently discovered
SNPs to a 13-SNP GRS did not provide a significant improvement in
discrimination between individuals with and without CVD events.
Also, the findings in this study may  be applicable only to European
Caucasians or their descendants. Finally, due to the survival bias
mentioned above, we have probably underestimated the true per
unit effect size of the GRS on risk of CHD in the Framingham study.
6. Conclusions

A multi-locus GRS based on genetic variants unrelated to CVRFs
was  associated with a linear increase in risk of CHD events in two
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Española de Cardiologia 2011;64:385–94.

[

[

rosis 222 (2012) 456– 463

[4] Thanassoulis G, Vasan RS. Genetic cardiovascular risk prediction: will we  get
there. Circulation 2010;122:2323–34.

[5] Hlatky MA,  Greenland P, Arnett DK, et al. Criteria for evaluation of novel markers
of  cardiovascular risk: a scientific statement from the American Heart Associ-
ation. Circulation 2009;119:2408–16.

[6] Hindorff LA, Junkins HA, Mehta JP, Manolio TA. A catalog of published genome-
wide association studies; 2009, http://www.genome.gov/26525384.

[7] Janssens AC, Aulchenko YS, Elefante S, et al. Predictive testing for com-
plex diseases using multiple genes: fact or fiction. Genetics in Medicine
2006;8:395–400.

[8]  Ripatti S, Tikkanen E, Orho-Melander M, et al. A multilocus genetic risk score for
coronary heart disease: case-control and prospective cohort analyses. Lancet
2010;376:1393–400.

[9] Marrugat J, D’Agostino R, Sullivan L, et al. An adaptation of the
Framingham coronary heart disease risk function to European Mediter-
ranean areas. Journal of Epidemiology and Community Health 2003;57:
634–8.

10] Lluis-Ganella C, Lucas G, Subirana I, et al. Additive effect of multiple genetic
variants on the risk of coronary artery disease. Revista Española de Cardiologia
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